PDF eBook
Sample Preview
Size 1099KB
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
1192KB
$24
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions

Development of New Models Using Machine Learning Methods Combined with Different Time Lags for Network Traffic Forecasting

by Derman Akgol & Mehmet Fatih Akay (advisor)
 Paperback   small ebook icon   eBook PDF
Publisher:  Dissertation
Pub date:  2017
Pages:  112
ISBN-10:  1612334601
ISBN-13:  9781612334608
Categories:  Engineering  Technology  Computers

Abstract

The purpose of this thesis is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods.



PDF eBook
Sample Preview
Size 1099KB
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
1192KB
$24
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions
Share this book



Relevant events
18 - 22 Aug 2024 Santa Barbara, United States
05 - 06 Sep 2024 Johannesburg, South Africa
08 - 10 Dec 2024 Istanbul, Turkey
22 - 23 Jun 2024 Sydney, Australia, Australia
22 - 23 Jun 2024 Sydney, Australia, Australia