PDF eBook
Sample Preview
Size 278k
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
4091k
$12
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions

Data-Driven Modeling using Spherical Self-Organizing Feature Maps

by Archana P. Sangole
 Paperback   small ebook icon   eBook PDF
Publisher:  Dissertation
Pub date:  2006
Pages:  156
ISBN-10:  1581123191
ISBN-13:  9781581123197
Categories:  Computer Science  Computers  Science

Abstract

Researchers and data analysts are increasingly relying on graphical tools to assist them in modeling their data, generating their hypotheses, and gaining deeper insights on their experimentally acquired data. Recent advances in technology have made available more improved and novel modeling and analysis media that facilitate intuitive, task-driven exploratory analysis and manipulation of the displayed graphical representations. In order to utilize these emerging technologies researchers must be able to transform experimentally acquired data vectors into a visual form or secondary representation that has a simple structure and, is easily transferable into the media. As well, it is essential that it can be modified or manipulated within the display environment.

This thesis presents a data-driven modeling technique that utilizes the basic learning strategy of an unsupervised clustering algorithm, called the self-organizing feature map, to adaptively learn topological associations inherent in the data and preserve them within the topology imposed by its predefined spherical lattice, thereby transforming the data into a 3D tessellated form. The tessellated graphical forms originate from a sphere thereby simplifying the process of computing its transformation parameters on re-orientation within an interactive, task-driven, graphical display medium. A variety of data sets including six sets of scattered 3D coordinate data, chaotic attractor data, the more commonly used Fisher’s Iris flower data, medical numeric data, geographic and environmental data are used to illustrate the data-driven modeling and visualization mechanism.

The modeling algorithm is first applied to scattered 3D coordinate data to understand the influence of the spherical topology on data organization. Two cases are examined, one in which the integrity of the spherical lattice is maintained during learning and, the second, in which the inter-node connections in the spherical lattice are adaptively changed during learning. In the analysis, scattered coordinate data of freeform objects with topology equivalent to a sphere and those whose topology is not equivalent to a sphere are used. Experiments demonstrate that it is possible to get reasonably good results with the degree of resemblance, determined by an average of the total normalized error measure, ranging from 6.2x10-5 – 1.1x10-3. The experimental analysis using scattered coordinate data facilitates an understanding of the algorithm and provides evidence of the topology-preserving capability of the spherical self-organizing feature map.

The algorithm is later implemented using abstract, seemingly random, numeric data. Unlike in the case of 3D coordinate data, wherein the SOFM lattice is in the same coordinate frame (domain) as the input vectors, the numeric data is abstract. The criterion for deforming the spherical lattice is determined using mathematical and statistical functions as measures-of information that are tailored to reflect some aspect of meaningful, tangible, inter-vector relationships or associations embedded in the spatial data that reveal some physical aspect of the data. These measures are largely application-dependent and need to be defined by the data analyst or an expert. Interpretation of the resulting 3D tessellated graphical representation or form (glyph) is more complex and task dependent as compared to that of scattered coordinate data. Very simple measures are used in this analysis in order to facilitate discussion of the underlying mechanism to transform abstract numeric data into 3D graphical forms or glyphs. Several data sets are used in the analysis to illustrate how novel characteristics hidden in the data, and not easily apparent in the string of numbers, can be reflected via 3D graphical forms.

The proposed data-driven modeling approach provides a viable mechanism to generate 3D tessellated representations of data that can be easily transferred to a graphical modeling and analysis medium for interactive and intuitive exploration.

About the Author

Dr. Sangole is currently a post-doctoral fellow in the School of Physical and Occupational Therapy at McGill University, Montreal - Quebec. Her research includes studying motor control of the hand in patients with hemiparesis following a stroke, with the objective of identifying motor compensatory strategies in the upper limb. Her overall research interests include investigating motor control issues in rehabilitation, specifically neuromuscular control of movement.

She is a mechanical engineer by training and her past research experience included interactive design, deformable modeling, scientific data visualization and Computer Aided Design (CAD) data exchange. Driven by a personal interest in rehabilitation she moved to Galveston, Texas to do research at the University of Texas Medical Branch and the Transitional Learning Center--a post-acute rehabilitation facility for persons with brain injury. After completing a 2-year postdoctoral stint in Texas she returned to Canada to continue her academic career.



PDF eBook
Sample Preview
Size 278k
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
4091k
$12
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions
Share this book



Relevant events
NOV
15
CCAT 2024
2024 the 3rd International Conference on Computer Application Technology (CCAT 2024) Publication and Indexing: Accepted and presented papers will by published by Conference Publ...
15 - 17 Nov 2024
Wenzhou, China
NOV
15
ICCDA 2024
2024 The 8th International Conference on Computing and Data Analysis (ICCDA 2024) Proceedings: Full Paper submitted and accepted after successful registration will be publish...
15 - 17 Nov 2024
Wenzhou, China
NOV
15
ICFST 2024
2024 The 8th International Conference on Frontiers of Sensors Technologies (ICFST 2024) Publication: Accepted papers of ICFST 2024 after proper registration and presentation will b...
15 - 17 Nov 2024
Kunming, China
NOV
15
ICSPS 2024
The 16th International Conference on Signal Processing Systems (ICSPS 2024) Publication: Submitted paper will be peer reviewed by technical committee, and accepted pap...
15 - 17 Nov 2024
Kunming, China
NOV
15
ICRAE 2024
2024 9th International Conference on Robotics and Automation Engineering (ICRAE 2024) Publication: Submitted papers will be sent to around 2-3 reviewers for peer review. And acce...
15 - 17 Nov 2024
Singapore, Singapore
NOV
15
ICRAI 2024
2024 10th International Conference on Robotics and Artificial Intelligence (ICRAI 2024) Publication: Submitted papers will be reviewed by 2-3 peer reviewers. And after reviewing,...
15 - 17 Nov 2024
Singapore, Singapore
NOV
16
5th International Conference on Machine Learning Techniques and Data Science (MLDS 2024) 5th International Conference on Machine Learning Techniques and Data Science (MLDS 2024) N...
16 - 17 Nov 2024
zurich, Swaziland
NOV
16
SCAI 2024
13th International Conference on Soft Computing, Artificial Intelligence and Applications (SCAI 2024) 13th International Conference on Soft Computing, Artificial Intelligence and Applications (SC...
16 - 17 Nov 2024
Zurich, Switzerland, Switzerland
NOV
16
NLAI 2024
5th International Conference on NLP & Artificial Intelligence Techniques (NLAI 2024) 5th International Conference on NLP & Artificial Intelligence Techniques (NLAI 2024) Novem...
16 - 17 Nov 2024
Zurich, Switzerland
NOV
16
IBCOM 2024
5th International Conference on IoT, Blockchain & Cloud Computing (IBCOM 2024) 5th International Conference on IoT, Blockchain & Cloud Computing (IBCOM 2024) November 16...
16 - 17 Nov 2024
Zurich, Switzerland