Paperback Edition
Paperback
239 pages
$25.95
Choose vendor to order paperback edition
BrownWalker Press
Amazon.com
Barnes & Noble
Harvard Book Store
Return policy
PDF eBook
Entire PDF eBook
6807k
$17
Get instant access to an entire eBook
Buy PDF Password
Download Complete PDF
eBook editions
High Angular Resolution Studies of the Structure and Evolution of Protoplanetary Disks
by Joshua A. Eisner
Paperback
eBook PDF
Publisher: | Dissertation |
Pub date: | 2005 |
Pages: | 239 |
ISBN-10: | 1581122802 |
ISBN-13: | 9781581122800 |
Categories: | Astronomy & Space Science Science Science |
Abstract
Young stars are surrounded by massive, rotating disks of dust and gas, which supply a reservoir of material that may be incorporated into planets or accreted onto the central star. In this dissertation, I use high angular resolution observations at a range of wavelengths to understand the structure, ubiquity, and evolutionary timescales of protoplanetary disks.First, I describe a study of Class I protostars, objects believed to be at an evolutionary stage between collapsing spherical clouds and fully-assembled young stars surrounded by protoplanetary disks. I use a Monte Carlo radiative transfer code to model new 0.9 micron scattered light images, 1.3 mm continuum images, and broadband spectral energy distributions. This modeling shows that Class I sources are probably surrounded by massive protoplanetary disks embedded in massive infalling envelopes. For the best-fitting models of the circumstellar dust distributions, I determine several important properties, including envelope and disk masses, mass infall rates, and system inclinations, and I use these results to constrain the evolutionary stage of these objects.
Second, I discuss observations of the innermost regions of more evolved disks around T Tauri and Herbig Ae/Be stars, obtained with the Palomar Testbed and Keck Interferometers. I constrain the spatial and temperature structure of the circumstellar material at sub-AU radii, and demonstrate that lower-mass stars are surrounded by inclined disks with puffed-up inner edges 0.1-1 AU from the star. In contrast, the truncated inner disks around more massive stars may not puff-up, indicating that disk structure depends on stellar properties. I discuss the implications of these results for disk accretion, terrestrial planet formation and giant planet migration.
Finally, I put these detailed studies of disk structure into a broader context by constraining the mass distribution and evolutionary timescales of circumstellar disks. Using the Owens Valley Millimeter Array, I mapped the millimeter continuum emission toward >300 low-mass stars in the NGC 2024 and Orion Nebula clusters. These observations demonstrate that the average disk mass in each cluster is comparable to the "minimum-mass protosolar nebula," and that there may be disk evolution on one million year timescales.
About the Author
Joshua Eisner graduated from Harvard University in 1999 with an undergraduate degree in Astronomy & Astrophysics and Physics. After obtaining a Masters of Philosophy at Cambridge University in 2000, he completed a Ph.D. in Astrophysics from the California Institute of Technology in 2005. The author is currently a Miller Research Fellow at the University of California, Berkeley.
Paperback Edition
Paperback
239 pages
$25.95
Choose vendor to order paperback edition
BrownWalker Press
Amazon.com
Barnes & Noble
Harvard Book Store
Return policy
PDF eBook
Entire PDF eBook
6807k
$17
Get instant access to an entire eBook
Buy PDF Password
Download Complete PDF
eBook editions
Share this book
Relevant events
FEB
27
CRYMC25
2025 Central Region Younger Member Council (CRYMC)
A major event for civil engineers, featuring technical sessions, workshops, and networking op...
27 - 01 Mar 2025
Online Event | United States
MAR
23
ACS2024
ACS American Chemical Society Spring 2025
ACS Spring 2025
Pushing Boundaries. Solving global challenges
ACS Meetings & Expositions ...
23 - 27 Mar 2025
Online Event | United States
JUN
23
SOFE2025
Symposium on Fusion Engineering 2025
Hosted by the MIT Plasma Science & Fusion Center at MIT's campus in Cambridge, MA
We at th...
23 - 26 Jun 2025
Cambridge, United States
SEP
18
RCCECONF
3rd Global Conference on Research in Chemistry and Chemical Engineering
We are excited to invite you to the 3rd Global Conference on Research in Chemistry and Chemic...
18 - 20 Sep 2025
Prague, Czech Republic
DEC
15
AGU25
American Geophysical Union (AGU) Fall Meeting
The submission period for session, town hall and workshop proposals for AGU25 will open March...
15 - 19 Dec 2025
New Orleans, United States
FEB
13
International Meet & Expo on Chemical Engineering and Catalysis
We are elated to announce the much-anticipated International Meet on Chemical Engineering and...
13 - 15 Feb 2025
Dubai, United Arab Emirates
FEB
21
ICCCP 2025
2025 14th International Conference on Chemistry and Chemical Process (ICCCP 2025)
Publication:
The accepted and registered papers will be published into International Journal...
21 - 24 Feb 2025
Okinawa, Japan
FEB
21
SOCIALSCINECES
The 8th World Conference on Research in Social Sciences (Socialscinecesconf)
The 8th World Conference on Research in Social Sciences will gather academics from around the...
21 - 23 Feb 2025
Milan, Italy
MAR
7
ICARSH
9th International Conference on Advanced Research in Social Sciences and Humanities
Having successfully launched the eighth edition of the ICARSH conference, we are happy to ann...
07 - 09 Mar 2025
Vienna, Austria
MAR
13
AGRICONF
5th Global Conference on Agriculture
The 5th Global Conference on Agriculture, scheduled for March 13-15, 2025, in Berlin, Germany...
13 - 15 Mar 2025
Berlin, Germany