Paperback Edition
Paperback
274 pages
$25.95
Choose vendor to order paperback edition
BrownWalker Press Amazon.com Barnes & Noble Harvard Book Store Return policy
PDF eBook
Sample Preview
Size 219k
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
979k
$17
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions

Improved Forecast Accuracy in Airline Revenue Management by Unconstraining Demand Estimates from Censored Data

by Richard H. Zeni
small book icon  Paperback   small ebook icon   eBook PDF
Publisher:  Dissertation
Pub date:  2001
Pages:  274
ISBN-10:  1581121415
ISBN-13:  9781581121414
Categories:  Business  Transportation  Business & Economics

Abstract

Accurate forecasts are crucial to a revenue management system. Poor estimates of demand lead to inadequate inventory controls and sub-optimal revenue performance. Forecasting for airline revenue management systems is inherently difficult. Competitive actions, seasonal factors, the economic environment, and constant fare changes are a few of the hurdles that must be overcome. In addition, the fact that most of the historical demand data is censored further complicates the problem. This dissertation examines the challenge of forecasting for an airline revenue management system in the presence of censored demand data.

The number of seats an airline can sell on a flight is determined by the booking limits set by the revenue management system. An airline continues to accept reservations in a fare class until the booking limit is reached. At that point, the airline stops selling seats in that fare class-It also stops collecting valuable data. Demand for travel in that fare class may exceed the booking limit, but the data does not reflect this. So the data is censored or "constrained" at the booking limit.

While some models exist that produce unbiased forecasts from censored data, it is preferable to "unconstrain" the censored observations so that they represent true demand. Then, the forecasting model may be chosen based on the structure of the problem rather than the nature of the data. This dissertation analyzed the improvement in forecast accuracy that results from estimating demand by unconstraining the censored data.

Little research has been done on unconstraining censored data for revenue management systems. Airlines tend to either ignore the problem or use very simple ad hoc methods to deal with it. A literature review explores the current methods for unconstraining censored data. Also, practices borrowed from areas outside of revenue management are adapted to this application. For example, the Expectation-Maximization (EM) and other imputation methods were investigated. These methods are evaluated and tested using simulation and actual airline data. An extension to the EM algorithm that results in a 41% improvement in forecast accuracy is presented.





Paperback Edition
Paperback
274 pages
$25.95
Choose vendor to order paperback edition
BrownWalker Press Amazon.com Barnes & Noble Harvard Book Store Return policy
PDF eBook
Sample Preview
Size 219k
Free
Download a sample of the first 25 pages
Download Preview

Entire PDF eBook
979k
$17
Get instant access to an entire eBook
Buy PDF Password Download Complete PDF
eBook editions
Share this book



Relevant events
APR
15
WBLCONF2025
World Business Leaders Conference Elevate your leadership at the World Business Leaders Conference, the essential gathering for...
15 - 17 Apr 2025
Riyadh, Saudi Arabia
FEB
14
ISCBI 2025
2025 7th International Symposium on Computational and Business Intelligence (ISCBI 2025) All the accepted papers, after registration and presentation, will be published in the IEEE X...
14 - 16 Feb 2025
Macau, China
FEB
21
IMEACONF 2025
The 14th International Conference on New Ideas in Management, Economics and Accounting (IMEACONF) IMEACONF has hosted participants from diverse countries worldwide. This event brings together...
21 - 23 Feb 2025
Milan, Italy
FEB
26
ICBML
2nd International Conference on Business, Management and Leadership Conference Overview: The 2nd International Conference on Business, Management, and Leadership...
26 - 28 Feb 2025
London, United Kingdom
MAR
7
ICABME
9th International Conference on Advanced Research in Business, Management and Economics Want to learn all about the newest advancements and tools for research in the world of busine...
07 - 09 Mar 2025
Vienna, Austria
MAR
14
8TH BMECONF
8th International Conference on Applied Research in Business, Management, and Economics We are pleased to announce the International Conference on Applied Research in Business, Ma...
14 - 16 Mar 2025
Berlin, Germany
MAR
21
WORLDMBE 2025
The 7th World Conference on Management, Business and Economics (WORLDMBE) Join us from March 21-23, 2025, in Prague, Czech Republic, for the 7th World Conference on Ma...
21 - 23 Mar 2025
Prague, Czech Republic
MAR
27
ICBMF
8th International Conference on Business, Management and Finance The business and management conference will take place in Oxford, UK on March 27 – 29, 2025. ...
27 - 29 Mar 2025
Oxford, United Kingdom
APR
3
Fashion Tech Week Bengaluru 2025 With an immensely positive response to the 2nd edition Fashion Tech Week 2025 is set to be he...
03 - 04 Apr 2025
Bengaluru, India
APR
16
ICARBME
9th International Conference on Applied Research in Management, Business and Economics Want to know and learn about the newest trends and developments in applied research? Say no m...
16 - 18 Apr 2025
Athens, Greece